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"Approximation of infinite delay and Volterra type equations"

by K. Ito and F. Kappel

Summary

L

Linear autonomous functional differential equations of neutral type
include Volterra integral and integrodifferential equations as special
cases. The paper considers numerical approximation of solutions to
these equations by first converting the initial value problem to an
abstract Cauchy problem in a product space (En * weighted L2-space) and
then using abstract approximation results for C -semigroups combined with
Galerkin type ideas. In order to obtain concrete schemes subspaces of
Legendre and Laguerre polynomials are used. The convergence properties
of the algorithms are demonstrated by several examples.

Running head: Volterra type equations

Subject classification: 34GI0, 34K99, 45D05, 45J05,45L10
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I. nt ro iuct ion

The purpose of this paper is to develop an approximation scheme

based on Li-approximation by orthogonal polynomials for the

followinc problem:

0 P t t 0

y(t) = + A. S x(T-h.)di + f f A(a)x(T+O)dodt

j=0 j 0 0 --

t
+ f f(T)dT, t > 0, (1.1)

0
p 0

x(t) y(t) + B.x(t-h.) + f B(T)x(t+T)dT a.e. on t >
'l 1 -J 0

x(t) : (t) a.e. on t < 0,

,ho h 0 ]n 1I
.^ where 0 h < h < ... < h h, $ 0 and resp. f is0 1 p

an R n-valued function on (--,O] resp. [0,-). Furthermore, A.,

B. are nxn-matrices and A(-), B(.) are nxn-matrix valued3
furrctions on (-c,O]. It will be convenient to define

p 0
D(x t ) x(t) - I B x(t-h.) - f B(T)x(t+T)dT,

p 0
L(x ) I A.x(t-h.) + _ A(T)x(t+T)dT,

j=0 0 3 -0

where as usual for a function x:]R -IRn the functions

xt : (-®,0 IR n , t > 0, are defined by x (T) = x(t+T), T < 0.

The state of problem (1.1) at time t naturally is the pair

(y(t),xt ). Correspondingly we choose as a state space

Z = 9 n x L 2(-w,O;R n ) with norm
g

0
4ZUK [ + f j (_), g(T)dT, E (0 ,) Z,

where the weighting function g is of the form

BT
g(T) e T < 0, (1.2)
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wi!th > 0, ;, is the Euclidean norm on ]R9n

Before we discuss t,:e solution semigroup of problem (1.1) the

next section wp indicate some special cases covered by (1.1).

It is clear that y(t;¢) is always continuous on t > 0,

whereas x(t; ) need not to be continuous on t > 0. This motivates

to introduce the pair (y(t),x t) as the state of (1.1) at ti.e-

and not the pair (x(t),x ) (see [ 3]). If for a solution of (1.2)

x(t;$) is continuous on then y(t) = D(x ) for all t > 0,

0 D( I), y(t) is locally absolutely continuous a.e. on t C

and x(t) is a solution of

dT D(x t) L(x t) + f(t) a.e. on t > 0,dt -t
.- (1.3),

x(t) : (t) for all t < 0.

Equation (1.3) is a functional-differential equation of neutral

type. Of course, if B. = 0, j = 1,...,p, and B -: 0 then (1.3)

is an equation of retarded type. Solutions of (1.1) for general

c Z could be considered as generalized solutions of (1.3). in

this case y(t) : D(x t ) only a.e. on t > 0. Further important
types of equations covered by (1.1) are Volterra integro-differential

V and integral equations,
t

x(t) = A (t-t)X(T)dT, t > 0
01.. (1 .J4)
0

x(0) =

(A. 0, B. : 0, B - 0, A(a) = A1 (-a), 0 : 0) and

t
x(t) f(t) + f B I(t-T)x(T)dT, t > 0, (1.5)

0 - 0
(A = 0, B. 0, A -0, B(o) B (- ), 1 0, f(t) = + f f(T )d ),
J - 1 f

% where f is locally absolutely continuous on t > 0.
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2. The solution semi,,roup

We impose the following condition:

2 nxn
A, B c L 2 g(- ,0;] ]R ). (2.1)

1/g

Since the weighting function g defined in (1.2) trivially

satisfies hypotheses (H1) and (H2) of [ 9 1 we get immediately

from [ 9; Thin 2.11.

Proposition 2.1. Assume f 0. Then the family T(t), t > 0,

of operators defined by

V t')¢ = (y(t; ),x t( ) ,  t > 0, C- Z,

where y(t;¢), x(t; ) is the solution of (1.1) corresponding to

, is a C -semigroup on Z.
0

-Let A be the infinitesimal generator of T(-). Then

Proposition 2.2. A is given by

01 1
dom A ) E ZjI is locally absolutely continuous

.1 2 n 1 0]Ron (-E,], $i L (-o,0; ) and D(¢1) = 0,g

A(O0, ) (L( ),$ ), ( 0, ) E dom A.

Proof: Let 0 e D(A) and choose X E]R sufficiently large. Then

-1 -At(AI-A)-Ip f e- T(t)pdt for a 0 c Z which is equivalent to
0

0 -et y(t ; )dt ,  2.2)

0

0 (T) = e x(t+T;i)dt e f e x(t;:)dt,T < 0.(2.3)
4 0 T



Equation (2.3) shows that ¢ is locally absolutely continuous

on (- ,OI and

1 1 1 2 In: - E L,--,o;T ). (2.))

From A - [At] 1 1 and (2.4) we see

1 -1

Taking Laplace-transforms in the second equation of (1.1) and

observing (2.2), (2.3) we get

0 1D( ).

Differentiating the first equation in (1.1) and then taking

Laplace-transforms we obtain analogously

- 0 0 = 1( )

This and AO _ [A]0 0  shows

01'A 0  : L(¢O )

Thus we have shown that the operator given in the proposition

is an extension of the infinitesimal generator of T(-). Call

this extension for the moment C and choose E e dom C. We put,

for A sufficiently large, : (AI-C) and 4  : (XI-A)- E dom A,

i.e. tp (AI-A) A. Then

0 1 1 1 1:AD(¢ ) - L(~ ) :AD(4 A ) - L(,)

1 1 -1 1 .1
Xp - ¢ : ¢ - .

*. . . . . . . . . . . . . . . 9. !-
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These two equations imply

c -- )(T) e (¢ (0) - 1(0)

arid A- A. ¢1 1

[AD(e I) - L(e I)]( (o) - ¢ (0 ) 0.

The estimate

I - D(e I) + - L(e I) [

p-1/2 1 -h.
< B le J + 1 ) 11 B + 1 A. le

j Z L/g j 0 i

1 1 1/2
A 2X+ Aj 2

L1 /g

A- A- -1
shows that [AD(e I) - L(e I)] exists for X sufficiently1 1
large, which implies ¢ (0) = (0) and therefore also E : dom A .

It will be necessary to consider problem (1.1) in state spaces

with weighting functions different from g as defined in (1.2). Let

0 < Y ,

) e < 0, (2.5)

- n 2 n
and put Z =]R L- -,0;IR) with the usual norm. Then

9 nxn
obviously A, B E L2 -(--;0; R ) and therefore Propositions 2.'.

1/g
and 2.2 are also true for problem (1.1) considered in the state

space Z. Let T(-) and A denote the solution semigroup of (1.2"

in Z and its infinitesimal generator, respectively.

Lemma 2.3. a) Z is dense in Z and the embedding Z c Z is

continuous.

1 *;1n Y i
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"or any v L -(,O ; 1n) and any a > 0 we ;ave

*a L2  n
I v c L2 (-- F,; ).

9

c For any v c L - (- ,0; 1 Wn) such that also v c L, -  , 0 , I a.d
F g

any a > 0 we have

6

lim e' j T T v(T )  0.
d). Th ses k :=dm

d) The sets D k:= dom A c dom A , k 2 1,2,..., are dense in Z
anir ariant with respect to T(

Proof: a) Density of Z follows from density of L2(-,0;] n ) i

2 , Rn g
L (--,0;1 ). The latter property is obvious, because all continuce,sg
functions with compact support are contained in Z. Since y <

we obviously have I 1 < J- for all E c Z.

b) This follows from

0
a( .2 F - l 12

S0 _ ) e e Iv(,)! 2 dTI i v, 2 = e
L

Fa 2c ,2 L22 ]vl -) , v t- L-(- ,0;W )

T

c) Using V(T) = v(0) + f v()dT we obtain
8 0

8
e TI Iv(T)I e T!i v(0)

8 0 -o*910/.

+ e I S e do) (f eJv( O)jd)

8 Te 2 ! + I e v) I V_ T v(Q)l+ e V 0,,, 1v , V'(" 0 ,

which implies the result.

d ) Clearly, Dk  is dense in Z and invariant with resp.r to

T(-) (cf. for instance 114)).

-.

,,, - . . .- - " . ." " " . '. - . . - - .. . - . . . - . . • - • - -.. .'. . '.. - . ' - '" ." - - - .



.trom a) it follows that Dk is dense in Z. Since ,t) -

-'r is clear that D is also invariant with respect to T(-

Tho inclusion D c D is okvious from a) and Proposit or. 2
Lk k

For the nonhomogeneous equation we have

Proposition 2.4. Let f e L1
o ( 0 , - ; ) and let x(t), "(t se

the solution of (1.1). Then

t
(y(t),x t ) T(t) + f T(t-T)(f(T),O)dT, t > 0.ta_ 0 "

For eauations with finite delays (2.6) was proved in ]
(see also [ l5 ], Section 2.3). The proof for the infinite delay

case is quite analogous and is left to the reader.

_ -



-. Legendre and Laguerre polynomials

In this section we state repectively prove convergence resu--
2

concerning L -approximation by Legendre and Laguerre polynomia s.

3.1. Legendre polynomials

For the convenience of the reader we first collect some wel -'

known facts on Legendre polynomials (see for instance t1 1]). T:>

n-th Legendre polynomial P (t), n =0,,..., is of degree nn

satisfies

[(l-t )P'] + n(n+l)P 0, Pn(1) 1
dt ) n n n

For all n = 0,1,...

-""P n(1) = 1, P (-)n -~
- .n n

S Pn(t)j 1 on [-1,11, .

1)-n(n+l) ( -(-1) :(1) n n(n+l)
,)n 2 ' n 2

The sequence P (t), n = 0,1,.., forms a complete orthogonal

set in L2(-1,1; R) ,

'Z(2 for n :m,S1 2n+

,{i Ffno(t)P (t)dt : (3.2)
-1 0 for n € m.

The derivative of P (t) is a polynomial of degree n-1 and thus

a combination of P (t), Pn(t),
0 ' ... ,' n-i ( )

k-I
.' .ok (t) : (4j+3)P (t),

-2 k =0 2j+i
., .(3.3)

P~ (t) X (4j+l)P j(t),
2k-,1 j=0 2

k 0 ,1,2....

l ev",



Lsing the orthogonality relations 3.2) we get Cor

§k(-I ,i ; f) thu expansion

*' 2 I .

, z f.P., f. 2j 1 f f t)P.(t)dt.
j=0 j 2 1 "

f ont sPo Pn

* L, the orthoFonal projection of onto span(P.
(r . -1,1; IL), i.e. r

N
S -e .

'if .1 lowing convergence results. When there is no

,on L' denotes di fferentiation.

..'. :r urny k 2 0,1,... there exists a constart

:. , .t re exists a constant c c(k such

k ,2
W

at-' V z 1,2 ,... there exists a constant c = c(k) such tnat

N k12 W'

for all f W k,2(-1,1; , 3)

:roof. a) and b) are special versions of results obtained in 1 .

c) is given in 7 ].

J1-
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5.?. Laguerre polynomials

The Laguerre polynomial Ln , n 0,1,2, is of degree n a J

satisfies

tL" + (1-t)L' + nL 0, L (0) 1. (3.L'
n n n n

The sequence of Laguerre polynomials L0L 1 , • •. is complete anL2 0i'* -t

orthogonal in L (0,; ]R) with weight w(t) e t _ 0,

(I 1 for m :n,w

Se-t Lm (t)Ln (t)dt f 1 for m3n,

0 0 for m n.

For the derivatives we have in analogy to (3.5) the formula

d- n-i
d L - [ L. n 0 1... (6
dt n j(0 '

-1
as usual : 0).

320

In order to derive convergence results analogous to those of

Theorem 3.1 we need some preparation. On the linear subspaces

. I C C2k-i (0,(;2]R k-i) locally absolutely contiruous
k

on [0,-), tmv(E) L (0,W';R), m = 0,1,..., j = 0,. 2k

and lim et/2 tmv(J)(t) 0, m 0,1,., j 0, ,2k-,

k 1,2,..., we define the operator B by

(Bv)(t) = tv(t) + (i-t)v(t), v e Bk.

1
Lemma 3.2. a) L B and L -- BL for n = 0,1,2,...,. n k n n n

k 1,2,.... Moreover

.1% ,

.. . ,. . . , . -..4. . . . ., , .. .. . 7 . . ., .. . .. . ... . ' . , . .,.h A 'l - ,- ,, - .,, . ', ,- , ' , . . ' . ' .' . ' -
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1Kv C j 0,. .. k-i, for all vE . (.7

L) Let v cC I(0,; ]R). Then v c B implies v c , k 1B1

c) L is symmetric in L (O,-; ]R).w

Proof. The first part of a) is trivial because of (3.4). Let

v c B . Then Biv is a linear combination of terms of the for7
tv , 0,1,2,..., v = 0,1,...,2j, and therefore tm(BJ ) V)

M (V
tm(B v)" are linear combinations of terms of the form tov

W = 0,1,..., v = 0,1,..., 2j+2 < 2k. Then the result is obvious.

tL)We only have to prove tmv E (0,-; JR), m = 0,1,..., an
- t/2 L w

e tv(t) - 0 as t , m = 0,1,.... Since trivially
tL2v() E (0,; IR) and e-t/ 2 trrv(O) - 0 as t we only have

to investigate t f v(-)dT. The result then follows from the

estimates 0

-t t 2 t
f e- t (T)dj 2dt < f e- t t Iv(T) 2 dTdt
0 0 0 0

f e-TI()I 2p(T)d <
0

where p(T) is a polynomial of degree 2m+1, and

-t/2 m -t/2 m+1/2le t (T)d-rL <  e t l 2

0 w

c) Density of Bk  is clear by a). Let u-,v E B Then

-te (1-t)u(t)v(t)

e u(t)e 2v(t) - e tu(t)e -  v(t) -0 as t

and also

te-tu(t)v(t) =e-t /2t u(t )e-t /2v(t) 0,

te-tu(t) (t) 0 as t - -.
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Therefore by integration by parts

<Buv> e-t[tu(t) + (1-t)u(t)]v(t)dt
L2 0w

- u(O)v(O) - S et [(l-t)v(t) + tv(t)]u(t)dt
0

f e- t[f(1-t )v(t) (2-t )v(t)]Ju't )dt

0

f e-t ((1-t)(t) + tv(t))u(t)dt = <u,Bv> 2
0 L2

We now are in a position to prove convergence results for

Laguerre polynomials similar to those of Theorem 3.1 for Legendre

polynomials following the approach taken in [ 41. For

2 e -t
U : kLk E L w L(O,-;l), uk f u(t)L k(t)dt, k = 0,1,2...,

k=O 1 0
let uN be the image of u under the orthogonal projection

P LN (0, m;IR) -* span(L .. L ), i.e.
w O N

N N N
u = UkLk

k=O .

Theorem 3.3. Let u E . Then

lu - u NIL < IBkuL, N 0,11....

L (N+I) k  L2

W W

Proof. Using Lemma 3.2 we get

I 1 '

u <uL > 2 - <u,BL > 2  <BuL 2uj ,jL2 3jL2 B Lh~2

w w w
1k k

L
w

This implies
'
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- 2 1 I<kL 2L .2k ' 2Lu j2  N 1 L,-u L -  j:N+l j:N+I j L2  '

< I iku 2 N:01 "

- (N+I)2k L2

w

It will be convenient to use the notations D - dt and
~N NP D - DP

Lemma 3.4. a) For any u E span(Lo,...,LN

Dul2 < NIju;2' N 0,1,2....
L LLw Lw

b) For any u such that u e Bk

N /2 Bk N:12i

KUL 2 < Nk-1/2 B L 2  N 1, ....

w w
N

Proof. a) We have u : u.L. and using (3.6)
j=0

N N j-i N-1 N
Du u.L. -u. L. u.)L.

=1 J J  j=i i=O i=O j=i+j

Therefore by Cauchy's inequality

2 N-1 N 2 N-1 N N 2
IDul 2 ( u. < I ( 1 1)( 1 luj.I )

i=0 j=i+1 - i=O j=i+l j=i+l

N-1 N N j-1I (N-i) I luj 12: u 1 (N-i)

i=O j1i+l j=1 i=0

N N 2 N(N+I) N2 1 2

I j) u I < 22 < lul
j=0 j=1 2 L L2

w w

b) Let u : z.L.. Then
j J

N N
PNDu : z.L.. (5.8)

=0



We next compute the Fourier-coeffiients of f u(o)do. Since
0

u E- S we have for some constant c > 0k>

u , < ce 1 , T 0

This implies

M -1 T /2_f e- IL.(T)l f u(o)Idc < 2c f e T IL (T)I(e -1)d-
0 0 0

< 2c - T / 2e L(-)d < 

0

Therefore we can use Fubini's.theorem in the following computations.
3

For the moment we put w. E z.L. and get
* ~ i=0

f e- L.(T) f u(a)dodT f u(a) J e-T L.(t)dTdo
0 0 0 0 4

J (i Z <u, J i), .. :% -u~f( L. (a))da , j > 2.

0 i0 i:O L2
w

<., L 2 f e-2 ( I L. W)do
i=O L 0 i=O

w
oW T

f,5 e-L. () wf ()dodt.

0 0

From (3.6) we obtain

T

f Li(a)dc = L.(T) - Li 1 (T)

0

and therefore

T T

f (o)da I z. L.(a)do : zi(Li(r) - L.i+ 1 ()).

0i-0 0 i-0
I'-_

.4 "'

", , , " " , "," ",.,., ,'-" ,." " " ' , "'- " ,...- -""' " " " " " " """-" """" 
. ': ' 7
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h

in- this above we get

f e L.() u(o)dodT z.<L .L.-L. > 2
0 0 i:O ' 3 i+1 Lw

z. - z. for j : 1,2,...,

z for j:0.
A0

T

F-'crm u(i) = u(O) + S u(O)do we obtain
0

-u (u} + z )L0 + -z L

NN
u (u() + z )L + (z-z )L.

Us inEg (-.6) this implies

j= i= j i=O j=+ .

N -1
~(z i-z )L.

i=Q

S,.

* This arid (3.8) give

N N N-i
K U I z.L. I o (z -z

j=0 j -j0 N)L

N-1 N..
-ZL + zp L. zN . .N j 1 N N=0

Using Theorem 3.5 for N-i and uwe get

N 2 2 -N-i.2% K UI2 (N+i)IzN~ (N+1) I Iz I (N+ 1)Iu P UL 2 j=N L-2w 1
N+ 1 Hk* 2 < 2 IBk!,2  2
-2V PB2- 2k-i1 '
N L N L

w w

KA' . . . ( j z L
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Theorem 3.5. a) Let u be such that u c B k. Then the
following estimate is true:

9- N c
( 2 Nk-+1/2 N 1,2,...,

N

for z. 1,2,..., where c k c( Bk "  k (t)
L 2 ',BU L2)

b) Let u be such that u B k Then for any T > 0

N cIn-.-.l --u 1 =_ mk- /2 ,

Lm(0,T; ) N1

where c = c(T,IBkU L2 ) .

w
c) Let u be such that u e 8k. Then

,-"

u(0) - (P N )(0) I~ ISkuI N 1,2
N L

Proof. a) An easy induction shows
D2. N--N 2 - = 1,

P PND + DJKND - 1- j ,
j=0

Using this formula, Theorem 3.3 for u ( z) and Lemma 3.4 (note,
Nthat K U E span(Lo,...,LN)) we get

ID'(u-uN )I < 1 N )k ku IL
L 2-(N+i)kL2w w9--i

'up + z NJ 12 k (.-J)

j=0 Nk- 112  I L2
w< 1- ~ (j)

," k - Z + 1 / 2  Yj1
Nj=1 Lww

T/2
L2b) Since , 2 < e T ul 2' the result is an immediate

L) UL(0,T; IF) -. L

consequence of part a) for 2 z 1 and Sobolev's embedding theorem.

%'% %
a ..

* A. A
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C/)Let Uz u.L. and u ~~z.L.. Then for j ~,

jU. <uL >

w W

1 d td 1 td.y -- (tet L )u(t)dt f te \_L.)u(t)dt.
0 d dt 0d

Us ing

t d L. j(L - Ljl

we gcot

u. 5 e-t (Lj- L. _)udt z. - zi-.
3 0 33i3 j

* Then

N N N
u(0) - (P u)(0) u(0) I u. u(O) -O I~- (z.j- z.~)

j=0 '~j~1

u(0) - u 0 + Z ZN

U(0) - e et u(t)dt + f e t (t)dt z ZN
0 0

-ZN"

From c B we get
Ikk

Z. - <B uL. 2 j 1,2...

Lw

A Therefore

N 2 2 -02
!u(0) -(P u)(0)I z ZNI < ~iIz.I

1 -Bk L>12 < 2I 'B k'2 2 N 1,2,....

j= k 2 N 2k L
w

Z 1 .~~71d



.Fo~rmulation of' the approximAion scheme

e. 'FHollowing the g-eneral outline given in 1?] or f[III we formul ate

% the approximation scheme for problem (1.1) using Legendre and

Lav uerre polynomials. Throughout this section we replace the

iweighting function g as defined in (1.2) by

J1 for -h < T <0

g() T

h ~~) frwhere as before 6 >C. This weighting function gives th-e sam.-e

space with an equivalent norm as the one defined in (1.2). Let
r. h.-h i1 1 1 ,...,p, and define the functions .

1 1,... ,p+1, by

*~~ .. 4() =--(h. +h.+2ir), -h. < T < -h.,(.2
*1 r. i- I i1

for i 1,... ,p and by

Trivial computations show that the mappings 0. defined by

0 =i X 0 i 1,... ,p+1, are metric isomorphisms

L 2(_-1,1 ;I ,) -~L 2(-h.,-h. ,nR), 1,...,p, and L 2(C,.;lE')
2 ,n1 i i w

L q(--~,-h;IR) respectively.

* - We put

P I for -h. - -

0 elsewhere,

i 1- 1 ,p, *j 0... ,N, a-nd



,. (~ ( ))I for - < -h,

S0 elsewhere

= 0,...,N. Furthermore, let

e00  (I 0, e.. (0,e ) i I , ,p+l1 j 2 0 , ,N,

N ,N .eE (e 1 0,..e 1+ 'N , E (e 0 0 , e1 , .e . +

N
Y span(e. ... ,e 1N1 .i

1 p+1 '

Z Fn x Y span(e 0 0 e 1 0 , e p+1N

Let p Z Z Z be the orthogonal projection. The coordinate
N N 0 1

vetor ) c Z is given by

a (p (Q )1( 0 ,<e 0 1 , 2" > .. ,<e € >

Lp+l, Lg g

where

QN -N -N t N IIn."
Q N N diag(I,rq. rpq ,q ) (

:4- 1 ' >Z '' '(N+I) '"6).

where I(N+1) denotes the n(N+1) x n(N+1)-identity matrix and

IN I> is given by
S i 2 jk:,...N

g
N I 1 I

q diag(1'3 .... '2N+1I
NN

For later use we note that for 0, ' c Z with coordinate vectors
N N

a a (*), respectively, we have

N..1.L,7
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c icx .. .. 7)

Following the general scheme as outlined in [121 or [1]

we introduce the approximating delta-impulses 6. by1

EN N N N I - N T0. E (Q) E (-h._ O )

i = 0,. .,p. Easy computations using (.), (4.5) and (4.6) show

I hat

N 1y col(C,.. ,,1,1, . ,2N+l,, 0 ,0) I, 1 0, -
1 r.

i+l

where the nonzero ertries occur at positions i to i+N, and

N" col(,,. . . ,U,l, . ,I)a I

p ,... ... h eI
For later use we com,,ue the norm of 6 considered as an operatr

R L . Using (4.7) and the explicit representation for N giveng n
above we get for x g n

N 2  xT N)TQN N
.6 xX < 6 C.'X> 2.x (-i 'ix

L 2g

, (2k+1)xl2 (N 1) 2 2

ri+ 1  (2 ) r. Il -

for i 0,... ,p-l, i.e.

SN, 1__)112il 7- ((N+1), i 0- ,...,p-1.( . )

i+l

Analogous computations give H

6N (N+ 1/2 (.)pj
J.

OU

,-/t'* *

-P
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A: in: (see proof of Lemma 5.1) we obtain

< " >q- (-h - )* ' i 0' " '

:'or x and ¢ - Y. In analogy to the definition govc!.

1 L.for, the retarde finite delay case we defie t.e

cot.roximating operators A Lv

(A.4¢)C ¢ 10 1
/'_ C . (-h.) + B(T)¢ (T)di)

1=!1 -

+ (-h ) + A() l (T)dT (4.11

+, A + i B. (-hi) + [A(T)+Ao E1 ()d,

A N 1 d_ (1+ ! N 1 B) (-h. 0)
(i')l dT + B B( ) 1 1 T

i l- ( *4 12

141
L~ Nt (- . - (- -0))

for ¢ 2 (¢0 1 N
or, ) E Z

N
The approximation z (t) to (y(t),x t ) is giver: by

t

.4.. N N
(t) : eA t pN + 0 ei (t-s)(f(s) ,0 )ds t > 0, ( 7.1',)

0

.[

t: N N
z (t) 2 A z (t) + (f(t),0), t _ 0,

N Nz (0) p .

For the implementation of the scheme we have to compute matrix

representations [AN I for the- operators A N . As in [12] we get

':-. a .,**. :-: ..-.---....:::::::::: .::::::::-::-
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[AN ] 2 (QN)- ,*

where

N N N^N
H <E .AE>

- z

Using the definition of the basis elements and (4.11), ( .12) we
get

A (A0 6 0)

N^ j+1d +A((-1) (A B ) + A.. + A --e.+ . .Oi+

+ 6 0 ((-1)4 B. +B. .) + (-1)J+1r N

0i I11J -

2..,*...,p , j : 0,...,N,
N-d+ N p

A ep~~ (Ap~ + AoBp+ - + 6 B 6N).. ~ P+" 0pl,j' dr -p+l,j 0 +lj p

} :0,..N whr
-h.

A.1 - i

A(T)e (T)dT for i = p+1,

and

f i-B t)e i (t)dT fOr i 2 1..
- -h. J "3

B.. 2
13 -h

-f B(T)e p , (T)dT for i = p+1.
co p+1j

S .. ? - "" " < " ' ' -" ". •-<-"." .","-"." ' -".",: . " "." ' ' . + -.- ' ' ' ' '"-.: " ''""' .2 ''""''''"""
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d + Yoyromial of der'ree k-i on (- -
.,I T IK"" .. -- "i-i

"or i I I,.,p and on (--,-h) for i = p+1, respectively,

we -et immediately from the orthogonality relations (3.2) ar.d (. 7

d+
<e. .- e > 0 for j > k.

13 dT ik>L- "'"

g
In case j < k we get

<eTi d. e tikL2  J1

d +  )+
-h. 'd- -1<e., ek- <e.,*-T e.iL (-:- (1-(-1)5,

L Lh2

g

i =1,...,p, and similarly

'., d+

e<e e> 1 ( J. 1Ep+1,j ' d ,k 2

Usi-ng (4.10) and the definition of the basis elements we obtain

N-
e 0 0 ,A e0 0 > = A0 ,

N-<e 0 0 , A e ij > (-1)0 (Ai+A B i ) + A ij + A Bij,

i i : ~,...,p, j : o . .N

e A ep++ A Bp+

1'j 0. • 0 0 iN^

<e 1jA e00 >z I, j 0,.,N
'00

,,lj Ik Z lj' di k L2  '

j,k 0 ,...,N,

N- k<e. A - >Z (- ) . + B
iJ' ik 1 ik'

5..' .f. ,,i, ... '.. ",,',. ",.','"- .. ,...' 1 "'' ,",' .' -. '"''''',.,.-.''' .".'' ,,. .-. " - '. < ". '" ''L,"''' . '..,
"

".v
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' e ,Ae B + k 0 ,N- 1,k Z pi,k'

<e.jA eik>Z =<ej..- eik>L2 I,

, 0, N i 2 ,p+l

N k
<e i+l,j e ik>Z (-) I,

j,k 0...,N, i = 1,...,p. All other inner products are zero.
*7. • HN

From this and (4.15), (4.16) it follows that H is given by

A 1 ............................. a0 1. p+l

N h N N N N
E .1 2 I+ 8................. p+1

0 0 kN I hNGI 0 0

-,H N 0

N °+1_ , 0 0 0 k®I CN

whe re

N. : (A i  i  ,- +A l , , - ) N (Ai O +),T

". (A +A B + 010 ,-(Ai+A B)+Ai +AoBilN (..

i iC io 0i i il

+ A +A B
iN 0 i'

'" i l,... p,

Nap+ 1 + (A +A Bp+1,0, .. , A +AoBSp+p,0 0 p+ p+,N 0 p+1,N

*1I
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N

fi -1 .. (-1) l

-1 (N+I)x(N+I) E I

N".

N N B. B.1

1 - ...-11 N

68. k 1 B. + iK i : 1 ,... , ,:
1 1 .4

(B . BiNj

N-1 1 IB n .. B - J
p+1,O p+1,N)

I-

h- E (N+I )x (N+I)

-1 -1

and

phl NE 2 (N+1)×(N+I)
n+,

I 0 4

-1 - -111

N N
The coordinate vector w (t) of the approximations z (t) E "

to (y(t),x t) is the solution of

• N NN

w (t) A N )WN(t) + f(t)col(I,0,..0

(4.17"
N N
w (0) p ,

where col(I,O,... ,0) E T 
n ( (N-l)p l )-n

a,.-
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NN
corse, the subspaces Y. need not to have the same

dimension, i 1,... ,p+l. We could also take Y.N span(e . ,e
. 1...,p+l. The resulting modifications are obvious.

Of course, it is also possible to choose g(7) =e , B > 0,

and to defined ;(t) = - a TT < 0. Then 0 x x o defines an

isomorphism L 2(0,; ]Rn ) - L 2(-,O; ]Rn). The basis elements of Z"w g
are defined by

e.(, .) r I, T < 0, j 0,. . N,

and

eon (1,0), e. ( e , 0 ,...,

yN ( 0 N n
Of course, Y span(e,..,e and Z . In this case

we have

N
- Q:diag(I,q ),

N n(N+ 1 )xn (N+ 1)
where q - diag(I,...,l) e We only have to

N Nintroduce 6 (eoe... N)yN with yo col(I,... ,I). Analogously

to ( .9) we get

I N+1 1/2

The operators AN  are defined by

AN) A 0  1 1
(A A,0u + (Ai +Aoi)0 (-h.)+ f[A( )+AoB(T)]o (T)dT

v,2 (4.18)

(AN<' : Y + 6 (0 -0'(0)+ i Bi 1 (-hi)+ JB(T) (-r)dr)

0 1 NNfor ,) Z . Again [A I is given by (4.14). By analogous

computations as in the previous case we obtain
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0 N
'AO a

N hN 6N

w he re

aN 2 (aO,..-,aN), (4. i .

p

c. Y (Ak+A B k)e(-hk) + A j + Ao Bj,lj Oll

0 0
0 .. ,N, A j A(-)e(T)d, B1j  f" B(T e (T)dT

E N col(I,... I) C ITn ( N + l ) ×n

hN = in(N+l)xn(N I)

- 1-

-N ] n(N+1)x n (N +l )
2 ~ ~~~~ C nN1)nN

0 81 N . N

p
Y. B k e (-h k + Bi0 1.kJ" 1 k~l Bk-j k Elj' J = 0,... ,N.

Again the coordinate vector for the approximations is governed

by (4.17), where now col(,O, .0)

As will be indicated at the end of Section 5 the scheme deterr-ir.e,.

by (4.18) will need more smoothness on the initial data compared -o

the scheme defined by (4.11), (4.12) in order to achieve the same

rate of convergence.

4 ~~~LS . . 4~- -.. -- - -. I4 L
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K Frocf oC convergence for the approximation fchemo

1--.e following assumption on the matrices B BP  will I

!,,) There exist numbers X. > 0, j a I p, such that the

npx np-matrix

T P (diag( ,  ,
1 p p

2(1 + X A.)

is negative definit. j31 J

Hypothesis (A) is certainly satisfied if ILBI, i i,...

sufficiently small. Moreover, by a transformation

-a~t
e x(t), a > 0,

we can always transform system (1.1) into a system such _t

1 2i' satisfied. Let A, B satisfy (2.1) and let 1 C L 2 (- , ;,BT g
where c r) e with some B E IR. System (1.1) is equivaler-

0 t
Lx 0 + $ Lxsds + f f(s)ds, t > 0 a.e.,0 0

1x(t) : (t), t < 0 a.e.

Then y(t) satisfies

t t-t 0 -at(t-S -atD t e + e L ydx + e f f(s)ds,
0 0

-at 1
y(t) e (t), t < 0 a.e.,

where

-- -h. 0
D Y y(t) - B.e Jy(t-h - B(i)e y(t+c i:at -

I, 1-

."4 .. 4 . " :: :'-4 --> 1 -'. - " .1 :> .- ) . . . .:> ' - -i - . . '- -. . -:-- "" . '-:" < .'
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ci-ali. 0

. V t -h.) + f A ( )e" y (t + i

-" tequation for y we get

t t 0 t s
E D ysd : ae d + f a e La y d d:

0 0 0
• 't t

"L 0 -t 0 CE t-sL~ f
• ¢ -. e € - [ e~a~feL y ds + f 'scL

a0 0

t t
L- t f f (j )CT + f CLSf( )ds.

0 C

:.,. 'e J , sat isfies the equation

t t
+ a(Lv aDys)ds + f e f(s)dSt

e e (' ), t < 0 a.e.

aTSYT ai¢ show

.,w t ionsc that e A - ae B and ea a. r, -a~~C1t I ; ~ :
-n -" ,' .' r e ¢ (- - , 0 ; 0  ) where g7 .

* '', 0. The main result of this : .

-. uppose that (A) is satisfied. Then

1i: T"( )p ¢ :T(t)O, t > 0, c Z Z,

r,, uni!'orm on bounded intervals.

T, r'* It immediately follows from t Trotter-Kato-Treor-.

, h. !\' sr.. [r:. r.? ,  contained in [14). The assumptions of this•

t '0 "rl Wi 'I Le yerified in the following subsections.

'Pk

r 7.

-" ',-0 .' . ..- .""'-,,> ." " ," "< -' -- . .,<.
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_ .1. Stability of the scheme

* . N Ht
In order to prove IT (t)I Me , t > 0, N = 1,2,...,

z5,l-.ow that

N 2 N<A ¢> < ZiI , ¢ N 1 ,2, . ,"

where ., is independent of N and <- > resp.

inner product resp. corresponding norm on Z for a we>-- .
, such that I"K and I" are equivalent, I I'

! 2d
r -di)q ()jd We choose

p

T1(r) E T) + I . for - E (-hk,-hkl),
j=k k

p+1 (h p) It is convenient to put a +
0.¢ 1 N , 0

k =1,...,p. Since ( 1+g )€) E Z for 4) (¢ , -
9

we ii-m=ediately get

I <6N g-g 1 T 1J 2 g 'g L2 J
,x l > XZ ( I +N g 2L

= 0 p Using this formula we get for 0 E Z

N 0 p 1"t <A > [A 0  0 + (A.+ B (-h )

0 0T¢

+ f(A(T)+A0 B( ) )o1(T)dT

0 d + I1 T
+ f ()(_- )T¢ (T)dT

Sp 10 1

+ 1 ( 
0- 1 (0)+ + Bj4) (-hj)+ -JB(T)¢ (7)d1) - ()...- j -0.

... j =1J- 1
p 1 1 Ti+ jj.a[+41 (-h.)-4 (-hj- 0)] 4 (-h.-0)

.+ ... + 1 4 •

". .- * - .-.- " -, - . . p - - " . -- " .' " ' d' . " . " . " . . ' -. -. - -. -.-. - - - . . . - .. - -. -
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!eeand in the following a : 1. We shall need the estimates

0

0 1 112 1

< _ IA(T)+A B(T)I 1 1/2 ¢1 ,
0 g(T)1 1 2 g(T) I () dT (5.2

< _ A + AoBI 2 <~

22 < I A + A0Bi 2 21 g g Lg

and

B( )cl(T)dT j I 2 1011 (5.
L L
-/g g

Furt hermore

d+ 1IT 1 1 d+  1 2d
f ) T> (u)d-i f g(r) a- 147(T) KdT

_dT 2 dcT

h - (h+T) d I' 1 2  + 1 h .- j- d [€ 1 (T)j 2 ddT d j-l 3 -h. dTe- T_ d-[ f- I I

1 ,h_ 2 - B B(h+T) 1 2
S2 e d

+ (x (-h. -0 2 
- 1l(-h)1.

From this we get

12 + I 1 Cj+lll(-h ) _ 1(-hj_0)I22 4 2 jl

1 p 1 2+ (a -cx )I (-hi)j
+1_j

1 1 2 1 p
2 h- a j +11 ( - 0)j

j1~ (--) 2 j+

+V 2 2-- eT d

--
%.

, ., < . , ... :.,:,._,, -... _x¢, .:,:,. : .. ,.,.., .. ,. -.......-,. :. .-.. ,. . ...-... . .. . . .. . .-.. ...



C ! (0) -, 1 'l, -h.) - 2

S1 21 j~ l j 3

1 1(_h )12 _ -h B(h+t 1) ( 2 d
S 2 - jI (T d-
2 ::l 2 _. e 2 T I

For I we get (also using (5-3))

P 0 -1 2SI = 1 [it + [ B. (-h.) + f B(T', (T)dT<21- 1 -

- l 0 -011 2  _ 1 1(0)121

2 21 2
< 22) ( + j B 1? + B., (-hj

L1 /g j=

a1  0 12 a 1 1  2
2 0  De 1 2 12.

Using (5.2) we obtain for I

I1  < A0 1 0 0 2  + IA + A0 BI 2 1 ! I L2
L1 /g g

1 0 2 1 2
J+ W IA. + AoB. I + E: I (-h.)l

j =1 j 1

By hypothesis (A) we can choose E so small such that
.',.',"

1C B (-h 2  +(-h.)2 + (-hi) < C.j l2 j l j l-

Alltoget her we have

<AN >
g

< (A I+IA+AoBI 2 +- 1 2)+AB1B
" %: + AjA I 2+2oL1(1+ 1 BI 2 2

Lii L1 1  g

for all C zN

-.-.,-.
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Te . of (5. 1 ) in case of (4.18) is quite ana~ogous Aair

or.e uses the weighting function g (instead of g(T) e , <,

in this case).

I_.2. Consistency of the scheme

In ths section we prove

N.p * + ¢ as N for all ¢ c Z (5.5

and

A Np¢ Act as N for all ¢ (5.6)

where V c don, A is such that (XI-A)V is dense in Z for X

sufficiently large.

bY Lemma 2.3, d) the sets Dk, k 1,2,..., satisfy Dk c dor A

and-are dense in Z. since (AI-A)Dk (XI-A)Dk and Dk = dor

we immediately get

S(I-A)D k  Dk- I

Therefore the sets Dk k 1,2,..., are appropriate candidates

4~D.

Let nF- (40, N) for : (,4c ). Then using Proposition 2.2,

(4.11), (4.12) and E) E dom A we get for E) E Dk

N N- 0 p N
(A p N - Act) : (Ai+A 0 Bi )(0 (-hi ) - 01 (-hi))

i=l

0 N 1
+ f (A(T)+A 0 B(T))() (T)-) (T))dT,

-4

-- -. .. . . . . .

"]"""'- """ k'' - . . . . ',',' _,._ ... ... .- ,, " . .. .- . '. . . ..-.-.-. ". , ." -".", . ", - ." - -". .-. '. ."."



f, r.,.,., , . ..- p- -,.. -*,,J :r rr"gin "1 1 -M

-N I d +  N I N O

(Ad, - i= ¢ - € + . ¢( ) - ~ (0)

P(h N N ((-h

+ 6(¢(h i  -¢(-h.)). r(

l Therefore by (4.8,) and (4.9)

1A N DN A < ( iA+AoBI + N+ JB N L

E7- L1/ 11 Ll/L
MNPIN+ 1 21 N

.. + I1-1 (o) - ¢ (0)1p- 1' - + 1- N

5' 1/

P- 1

p-. ...i N 1
+ (A+A 0 BiJ+-- 2 (BI +1)) /  (-h )- (-h

r1

+(IA p+A N-+ 1N11 1/ p 11 N

+ (N+I) p 1/2 I (-hi) - (-hi-0)1
[-'[i2=1 r1i+1

+ NI)1/2 1 N d +  N _1-~~~ ( -- I L- ) (- - )t + i (¢)[ 2.

For a function c L (--,O;IR ) we introduce . 2 -h-h.
g N 1-

1 1,...,p, and + 2 +p(--,-h). Let -i, i 1,. ,p, resp.
N L2 n N

7T+1 be the orthogonal projections L (-h.,-hi_;1 R) -+ Y. resp.
"n yN FuteroeN -NL -- ,-h; R n ) Furthermore, we denote by a resp. -- -.- g p+1 2"
the orthogonal projections L 2(-1,;,, ) - span(PoI,...,PNI) resp.
2 ON

L" w(0,_; ) - span(L 0 I,... ,LNI) (recall w(t) e-t).wN 1 oN0N
Since N N 1,...,p+l, we have to prove that as N

"..

NI.O.- 2 0, N 1 1,... ,p. (5.7)

NI4 1  N 1 - 0, (5.8).'. Ni p+ 1  - p+l p+llL2(_ , ;  n'

L (- -,-h;-
5'-. g



t i i~l i i

N ~ ~ T ¢ -h) )(-h -0 0 , . p
T-L (- 0 p"

1 1N1 1

1; ¢ (-h+ - (N p+1 (-h-0)j -+ 0
T "p+1 i

d 1 - U1 2 0(51
L (-h i 3-hi_

1-- , ,) , a n it 0 5.1>P+1 p+1 p+ L2 (--,-h; )

E, ¢. in order to establish JA ApN A¢I g 0 as N

f r ,.

K1

It is eas,." to see that

S1 p p

1n2 112

Lem .2 )Le(5.D.Ten cW' -,;4)

2 j -1/ 1 0...p , ke-  Morove
N C)

2 11 r 1 1 p112

ro1 +1

. ... we ut i : 1 ,... ,p+ !.

Lemma 5.2 a) Let c D D Then xi  ( W k, -1) ,
r .

(Jnd Morovr ( 1 j p0,. .. ,k. Moreover

-- _ • N ( )

(j)((xi-C, xi )  ) 0 ,

D 2e k - Then p+ B 8k  and (J _ 01 ) 1 pl +1i )(

_- c, 2k. Moreover ,
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p 1 + ) p+1 p+l p+1

O0,... ,2k. If in addition c D 2k+ then also Xp+1 E Bk.

c) Let ¢ c Z be such that E e C(--,0;IRn). Then x. E C(-1,1; --n 1
n

i ,...,p, xp+ 1  C(0, IR n and

- 1 ) -hi0 ) = xl(1) (N
4 i+ i+ 1 ×i+l I

i =1,...,p1

1 ~iNN 1 
-1-

(h) _ (7-7 )( -h11-0) x (0 ) (-1 )(
p+1 p+l p+l O  pl( 0

Proof. a) is an easy consequence of the linearity of the functior.s

C. and of (5.13). Similarly we get the formulas for the derivatives- ¢1 N 1
of x and of the error p0l - pTlN pI under b). c) is trivia-.

p+l p+1 p+1 p+1-
It remains to prove xp+ 1 E B for E • D2 k (and xp+l E Bkp_+1 k +

DIRn 1 (2k-1)
for D 2k+1). Using i (,0;] ), (P ) locally

absolutely continuous on (-+,0] (€1  E L2(_,0;IRnabslutly(- 1 )0 locally

0,...,2k, we get x El c2k-1(0'_;]Rn) (2k-i) locally
p+1 xp+ 1WJ • 2(0,;]Rn),,

absolutely continuous on [0, - ) and x p+ci L w

j = 0,...,2k. For m 0,1,2,... and j = 0,...,2k we have

m(¢1 (J) L2 n(T+h) p )  L (--,-h;R ) by Lemma 2.3,b). Therefore

) (_6)B0-1 ((+h)m( 1  )()) E L2(0,.; ]Rn). By Lemma 2.3,c)tp+l p+l(1 p+l
i we-.have

lime (+h (~h) ) Q(T 0

for m = 0,1,2,... and j :0,...,2k-1. This and e-t/2 tmx()
p- 6~h12 -1 T/12 m1 (j ) j

(-B)Jeh p+1 e  /T+h)m (P1 )()(t) show that
lim e-t/2tx(J (t) 0. Thi proves xp+ E k The proof for

p+1 B k in case P c D2 k+l is analogous j
p~..



5.

":sin-- Theorem 3.1, a) for k 2 arid Lemma 5.2, a) we see thnt

S( .7) is satisfied if D2 the rate of convergence being T

Slmilarly we obtain (5.8) (by Theorem 3.3 with k = 2 and
T 1

Lemma 5.2, b)) for D D with rate , (5.9) (by Theorem 3.1, c,

with k : 2 and Lemma 5 .2, a) and c)) for D 2 with rate1

S(5.10) (by Theorem 3.5, c) with k1 1 and Lemma 5.2, L)

and c)) for D 3 P with rate ' (5.11) kby Theorem 3.1, 3N 1

with k 2 and Lemma 5.2, a)) for ¢ c D, with rate arn

finally (5.12) (by Thecrem 3.5, a) with z 1, k = 1 and

Lemma 5.2, b)) for e D with rate 1 / 2 ).Alltogether we have

shown that

- A¢ = ( for D D

i.e. (5.6) is established with zV D

4 Condition (5.5) is an immediate consequence of Lemma 5.2 a) ar.d

b) and the completeness of the Legendre polynomials in L 2(-1,1; I.

2resp. the Laguerre polynomials in L (0,-; Ih).

Therefore all assumptions of the Trotter-Kato theorem in

are verified and the proof' of Theorem 5.1 is finished.

Remark. If' B = 0 then o E D4 can be replaced by E D 3 1
because in this case the factor N is not present in (5.8)

(and in (5.7)) and therefore 0 c D is sufficient for (5.8). Of
2

course, the smoothness requirements on 0 can be relaxed if one

uses interpolation spaces in order to get the estimates of Section 3

also for fractional. k.

In case of the scheme given by (4.18) we get for 0 c DkAA

Np N A

4' . .N+1 1/2 1 1 .*l *P.- ( A"j 0 B 2 BI 2 01, 1 ¢ ,+ 14) -;
0LIg L 2 L

-, , g
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. N 1 4~i(0) - N(0) + (+ 1/2 B 1(
i21 1 a

- 4 r(h) i + A + A B 1-h i  -h

roc eeding in a similar way as above we get

IA~p"4 - A 1  0(-1 for 4E D.

The reason for the stronger smoothness requirement in this case 4s

that for terms like N1/ 2 (-hi) - J(-h .), i = 1,...,p, we have

to use part b) of Theorem 3.5 instead of part c). If B. = 0,3
z 1,...,p, then we can replace D5  by D 3.

5.3. Approximation of the nonhomogeneous problem

Since (1.1) is linear we only need to consider the case 4 0

and f 1 0.

Proposition 5.3. Let z (t) be the solution of (4.13) and let

z(t) z (y(t),xt ), x(t), y(t) being the solution of (1.1) with

0 C. Then
lira z ;(t) = z(t)

t5,

uniformly for t E [0,t] and uniformly for f in bounded sets of

L (0,t; IR ), t > 0.

Proof. The proof is analogous to the proof of the corresponding

theorem in 2 1, using the variation of constants formula (2.6).

5.4. A special case

The scheme presented in this paper has the remarkable property
to give the exact solution in special cases. Consider (1.1) with

A. B. = 0, j = I,... ,p, i.o. we haveJ 3
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! 0
E(x,) x(t) - f B( )x(t+T )dr,

0 (5.15

L(xt) A0x(t) + f A(Tr)x(t+T)dT.

In this case, the schemes defined by (4.11), (4.12) and ty (4.18)

coincide. Furthermore, the T-method as described in 1 7 1 also

yields the same scheme. We put

a() A(~r)e ,B(T)e , "r < 0. ( .1

Note, that (2.1) is equivalent to a,b e L 2(-,;F nn).
g

Proposition 5.4. In addition to (5.15) assume that

(i) a,b are polynomials of degree < m

and
1

(ii) ¢ is a polynomial of degree < m.

Let

N N N N
x (t) w w00 (t) + I B .w .(t), t > 0, N : 1,2,..., (5.17)

00 j=0 Ij 3 _

N N N N
where w (t) - col(w 0 0 (t),w 0(t),... Nw(t)) is the solution of (4.17).

Then

N
x (t) x(t), t > 0, N = m,m+l,....

Proof. Since for j > m+1 the polynomials e. are orthogonal tc2 n

the columns of a and b in L (- ,O;]Rn ) we have a. : B. : 0g 3 3
for j > m+1 in (4.19) and (4.20). Thus for any N > m the

N
(ml)n-dimensional subspace of z spanned by e0 0 ,e0 ... ,em  is

invariant with respect to the system (4.17). Since by (ii) we have
0 1 N N T

(E, ) span{ee 0 ,... ,era}, the coordinates w 0(t),w 0  . .

of the solution w N(t) of (4. 1) do not vary with N, N > m.

~**** .
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N N NLet (t,T) I e. ()w(t), t > 0, i < 0. Then accordinf'"[ o Therem 51 anj=0 ' J-
tThoem 5.1 and Proposition 5.3

N ir N L2

lrn w0 0 (t) = y(t), lim IN (t) = xt  in L(5.1:
N-M N- g

uniformly for t in bounded intervals. Using the definition of

BIj and (i) we see that

N N 0 Nm N
x (t) w0 0 (t) + f B(-)1 (t,T)dT w0 0 (t) + I B w-(),

t > 0, N = m,m+l,.... This shows that

xN(t) = xm(t), t > 0, N > m. (5.2'

From (5.18), (5.19) and (5.20) we obtain

Sm(t) lim XN (t) y(t) + f B(T)x (T)dT x(t)

uniformly for t in bounded intervals a

If assumptions (i) and (ii) of Proposition 5.4 are not satisfied

we can give an estimate for x(t) - x N(t).

N

Proposition 5.5. Consider (1.1) with (5.15). Let rN be theY'[" ortogonal]R n ) _ yN
orthogonal projection L2 (-, 0 ;n = span(eo,...,eN) and put

9 N'

N N N Na : a, b b, N = 1,2,....

Then for any t > 0 there exists a constant c not dependent

on N such that

_x(t)-x N(t)t _ c( -- iN I + ja-aN 12 + i-bI 2 )
L L
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:'c 3) < t < t, N 1,3,..., where ' U i iv .0" F.1".

Proof. Let TN(t), t > 0, be the solution serrigroup generated

,by the solutions of (1.1) with f 0 O, A . : 0 , z 0 1,...,
ST N BT N J  J

and A, B replaced by e a (T), e b (T', respectively. For the

same equation with f arbitrary we denote the solutions correspor.dir-

to initial data O 1 and p N 0, 7 Ni by x (t), -

an- X(t), Y N(t), respectively. By Proposition 2.4

t

(YN(t), xN)t) T(t) + f TN(t-s)(f (s),0)ds, t > 0,
0

N t

(YN(t),(XN)t) TN (t)pN0 + 0 TN(t-s)(f(s),0)ds, t > 0.
0

Proposition 5.4 implies

N
x (t) = xN(t) for t > 0.

Using the second equation of (I.1) and xN(t) yN(t) +

0 NN

0e b N(x)xN(t+T)dT we obtain

Nx(t) - x (t) x(t) - xN(t)

0
= y(t) -YN(t) + S e b(T)(x(t+T) - N(t+ ))d-

0 T b N  - t d
+ f e (b(t) -b (T))xN(t+T)dT

0

y(t) - YN(t) + f e 6 b(t)(x(t+T) - XN(t+t))dT

0 a-
N+ Y (t) - YN(t) + f e b(-t)(xN (t+,)- N(t+ ))dT

0- (T))x N (t+T)dT, t > 0.e b +)N _.

-

-....................
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Ths e l~iS

N.N

L,,2 L

I / g
-, + IT N(t)(O-PNO)Z} 1+ Ib-bN1L21[(X N) t

-: for t > 0, N = 1,2,.... The dissipativity estimate (5. ) shoV:

4 that there exist constants M > 1 and W E IR such that

- ITN(t)] _ Me w t  t > 0

for all N. This and the variation of constants formula imply

-l N) I t 2 < Mew l + M f ew(t -s lf(s)lds

for 0 < t < t and all N. From Theorem 2.1, c) of [ 9 I we

immediately obtain

t'N N

-(y(t),x) - (Y N ( t ) ' ( x N  t iz  < c(la- a12 + ,b- b L

~L

0 < t < t, where c is not dependent on N. This together with

(5.21) - (5.23) implies the result a

'4.

b.

7

16



N' - -

. sect ion we discuss some numerical examp-I whi <'.

or.st rat the feasability of our scheme. All computatiot.

'e performed on an IBM 3081 at Brown University usinr so" .:.<-

written in FORTRAN. The integration of the system (4.1-1) c"

crir~ary differential equations was carried out by an IMSI,

!- e ( K) employing the Runge-Kutta-Verner fifth ana

"V s ixt:. oriei method. The coefficients a. and 6. i the m: .x,,J 3
t" in general were computed using Gauss quadrature formulae

E x ample I. This is the equation

0
x(t) 2 x(t) - f (1-sinT)e x(t+ )dT, t > 0,

Swit initial conditions

x(C) 2 1, x(t) z 0 for t < 0.

Ee~ause of the special initial conditions the equation is

- .euivalent to the Volterra integro-differential equation

t -t- T
x(t) = x(t) - f (1+sin(t-t)e- x(T)d , t > 0

0 (6.1)
x(O) :1.

Differentiating the equation in (6.1) we see that the solution to

(6.1) also satisfies the ordinary differential equation (D = d)
dt

(D 4  + 2D 3  + 2D 2  + D+ 1)x(t) = 0, t > 0,

x(o) = 1, (o) = 1, x(0) = 0, X(o) -1.

This equation was used in order to compute the exact solution to

problem (6.1).

< * :ij .'.. ' <::>c
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'I

Since the kernel A(t) = (1-sinl)eT is oscillatory, the gauss-

Lauerre quadrature formula has difficulties to yield accurate

values for the a. 's in (4.19). However, doing the same computaticr:3
as in the proof of Theorem 3.5, c) one can show that

M W t
Ik f e- t sin wt Lk(t)dt, Jk = e t cos wt L k(t)dt,

0 0

k 0,1,2...

satisfy the recursion

Sk; _ W k-l

k 1_ 2 {, k 1,2,...,t'j tkl i+ 1 k-1J

with I0  W 2, 0 1 2 Using this recursion the computation

of-the cz.'s posed no difficulties. The numerical results are shcwvn
SN 0

in Table 6.1. Note, that for our scheme w (0) : for all N.
00

Therefore Table 6.1 does not contain values for t 0.

t 4  (t) 8  (t) w 6(t) w32(t) x(t)
0 woo 0 0  0 0  0 0( 1

0.2 1.198396925 1.198724502 1.198671451 1.198669250 1.1986E%247

0.4 1.387642352 1.389698823 1.389419452 1.389413284 1.3894'72E7

0.6 1.559759944 1.565189040 1.564592523 1.564588332 1.564'5&K 2 i

08 1.707896224 1.717913392 1.717066793 1.717070745 1-7170-'7L

1.0 1.826226289 1.841347388 1.840439101 1.840451863 1.8404'C

1.2 1.909918666 1.929911297 1.929179071 1.929195874 1.929175 61

1'.4 1.955135808 1.979088201 1.978751749 1.978765590 1.9787 55& .c

1.6 1.959053190 1.985499876 1.985714422 1.985719468 1.98571E482

1.8 1.919884567 1.946954731 1.947788385 1.947782026 1.9477;2047

2.0 1.836904312 1.862474344 1.863905575 1.863888825 1.8638E z83-?

,CPU 0.018 0.029 0.054 0.126

Table 6.1

,-",. . • .F e .
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._ hi- ext le the assumptions of Proposition 5.5 are sa':. i.

Vs h;ave w() = x(t), t > 0, because b = 0 ObservinC

.... obtain from Proposition 5.5 the estimate

x(t) - 00o(t)l const.Ia - a NI 0 < t < t.

, g

!I is easy to see that a(-T) E Bk  for all k = 1,2,... (note
ThrfoekN const

1). Therefore according to Theorem 3.3 ja - a 2 < co ---,
L (.+1)

all k = 1.2,... (of course with const. depending on g k) whichN

means infinite order convergence of w N(t) - x(t) uniformly o.
00

compact intervals. This is reflected by Table 6.2 where we show
N N

max jx(0.2i) - w 00(0.2i)j for N 4,8,16,32.
i=,. .. ,1O 0

-- i N
N A

4 0.027897480

8 0.001414495

S16 0.000016790

32 0.000000021

Table 6.2

The next two examples have their origin in the dynamics of

structured populations (see [13]). Let x -be the size of individuals . -

the population, 0 < x < S, S being the maximal size. Then a simple

model for the evolution of the population density u(t,x) is giver-

by

ut(t,x) + (g(x)u(tx))x -U(t,x), t > 0, 0 < x < S,

u(t,0) = j q(x)u(t,x)dx, t > 0,
0

u(Cx) = 0(x), 0 < x < S.

Here w0 > 0 is a mortality rate (assumed to be constant), g is
0-

a growth rate (assumed to be positive on [O,S); for an individual



S-.. •- 4
dx7

,;ccordn- to d g(x)), q : a fecun :
dt

,i---arited to be nonnregative and essentially bounded) and -.

'_.nit:ial size distribution of the population.

By the method of characteristics one can show that the Li>:.

rate B(t) = u(t,0) satisfies the Volterra equation

t
Bt) z ~ -< <d + h(t), t > 0,

0

w he re

-i -Ii0

a( ) = g(O)q(G (1))e , > O,

-W ot S 1h t) : e j q(G (G( )+t))O( )dC, t > 0,

0

with

fd o
G 0 g()--0

Assuming that h is locally absolutely continuous on t

equation (6.2) is of type (1.5).

Example 2. This is equation (6.2) with 0  0.15, g(x)

b = 0.0075, S 60 and

q(T) - (-T + ST ), 0 < T < 60.
4S

q satisfies q(O) q(S) = q'(0) q'(2S ) :,q(2S ) . -or
3 3 1

this example

a() 27 bS(1 - eb 2 -(P 0 +b)> 0

and

V. . .- . ,. . , ".. . , -, ,' , . . .: . ', ','.j . .,,, + -¢ ,:.,,



f S

0 0
bt S•+ e L f 1 ( )dC t _> 0.

,0 0

Sir.ce a( ) is a linear combination of e J . W 0 + jb,

j 1,2,3, B(t) is also solution of an ordinary differentiale at ion (D = -q-):
ea~a ~ -dt

(D+ ) D+))(+ X t : ?27 b 3  SB(t),

I( + 3 )Bt 2
B(i) (i)

(o 2 f (0), i 0 ,1,2.

The numerical computations were carried out for - 1 or. [C,S]

and the results are listed in Table 6.3 (B(t) was obtained tb
sotvin6g (6.4))

o 1%,16

4; = O (t) Woo (t) w0 I (t) (t)

1 29.26615192 29.26917027 29.26917041 29.269170:L

J2 25. 38795761 25.39133074 25.39133081 25.391330E!

3 22.03843175 22.04086481 22.04086408 22.04086407

4 19.14858020 19.14960995 19.14960983 19.149609E7

5 16.65708019 16.65672030 16.65672016 16.65672016

6 14.50980845 14.50831247 14.50831234 14.50831274

7 12.65928231 12.65699712 12.65699703 12.65699703

8 9.68813725 11.06133885 11.06133881 11.06133881

9 8.50035095 9.68528995 9.68528996 9.68528996

10 8.5003509491 8.497625723 8.497625775 8.497625775

CPU 0.021 0.039 0.087
(sec)

Table 6.3

"- NWith respect to the rate of convergence w (t) x(t) the sa00e
00

remark are in order as for Example 1.
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).30.1, F" z, S

'0 O 0 .. T" - (2O, "h u nf, tIon is the same as for, Exa: 4e l .

- e::: C i coT!ur t t iors le;KJ to

x

G(x) , 0 < x < S

-~ ~~ _b ) 1+ by , 0 y<
"X) -- O

" } 2  E,a( , > 0,
£4(l~b<) 3

7S

h( 27 S [+bt(S-[)] £f 3 ( )d , t 0> .

0 [S+bt(S- ) 0

The Laclace-transform of a() is no more rational. Therefore the

solution (t) of (6.2) in this case does not satisfy an ordinary

differential equation. The results of our numerical computations

are shown in Table 6.4.

O* 8 ( 16 (t)

1- 00 00 w0

1 -14£6Lo0 1 13.1550cC .I 13.15574424

. 1.40999001 11. 420 2 42 11.42072946

3 9.95006970 9. 9557521 0 9.95572216

4 8.72995239 8.729620 ,7 8.72956630

5 7.71550920 7.71008F29 7.71002209

6 6.87 4802 85 6.865914795 6.86589901

7 6.17887223 6.16835637 6.16833122

8 5.60209160 5.591 452b2 5.59145294
9 5.12224059 5.1126)4292 5.11266498

.10 4.72038.561 4.712591466 4.71263182

-CPU 0. 05 0 .075 0.129
•(see) "__ _ _ _ _ _ _ _ _ _ _ _ _

Table 6.4

When the scheme determined by (4.18) is applied to equations

satisfying (5.15) the only quantities to be stored are a. and E.,
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9- 9-

- , " ,roximately linear growth of CPU time ctserve

-ir,1-; J*,: es that the matrix [A I is not sti10'.

wo exaisples show the advantage (as far as rate of

cor, ietoence is concerned) using the scheme defined by (4.11),

over the one defined by (4.18) when (1.1) involves also point

ie~a-s see t as she remark at the end of Section 5.2)

Ixam: 4. ': xae e-9.9u in [10]). This is the retarded proble-

0
>(t-1 ± 2 f se x(t+s)ds, t > 0,

X 2 9, x(t) 2 -t, t < 0.

Tile xact so' ,Ation is given by

x~t : ,;(t): 11 - 2t
x t t -2 sin t + 1 e t 0 < t< ,

4~ 2 4

4
1 + (t-1) 1 -

:-" 2 4 9 - t-"."+ -(t-l)cos(t-l) - (t-l)sin( - ) e

20-2 (t_1)e-2 t 1 1 t -"

For this example we used the Legendre- T
-u,-" r a...d hce

N
Laguerre scheme. In the first case we kept "ir' an(e

only increased the dimension of the "Legenr' " ce

Y 1 span(, N e a,8,16,32. h r are listed

in Table 6.5. As for the other examples A i- t ,.e maximum of toe

errors at the meshpoints. A comparison of the results for the

Legendre-Laguerre scheme and the Laguerre-scheme supports the remark

at the end of Section 5.2.

.

4.. . ' " " ! " '
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Exanple 5 (Example 2.11 iF [1OJ ). This is the ri,., tra! " ,:e

eq uaL i o n

0
(x(t) + 4 f se x(t+s)ds) x(t-1), t > 0,

dt _

x(O) = -4, x(t) 1, t < o.

The true solution is given by

4 1 4 -3tx(t) : (t) - - -t - -e , 0 < t < I,
9 3 9_
8 +13( 1 2 t- I

x(t) : (t) + 9 + 2 t-l) + 1 (t-1 -e

-3(t-1) 4 -3(t-I t 2
+ - e - (t-1)e , I t < 2.

The computations for this example were done in the same way as

for the previous example. With respect to a comparison between

the Legendre-Laguerre-scheme and the Laguerre-scheme the same

remarks are in order. The CPU-times and the errors are 1ar-er

for this example because the equation is of neutral type.
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